
Lecture 23 Differentiable Manifolds 10/14/2011

Last Time. We constructed for every finite dimensional vector space V a non-degenerate bilinear pairing

Λk(V ∗)× ΛkV → R with〈l1 ∧ · · · ∧ lk, v1 ∧ · · · ∧ vk〉 = det(li(vj))

for any l1, . . . , lk ∈ V ∗, any v1, . . . , vk ∈ V . As a consequence we can identify any product l1∧· · ·∧lk ∈ Λk(V ∗)
with an alternating k-linear map that whose value on the k-tuple v1, . . . , vk is det(li(vj)). From now one we
identify

Λk(V ∗) ∼−→ Altk(V ; R),
where Altk(V ; R) denotes the space of alternating k-linear maps. As a result, since Λ∗(V ∗) is a graded
algebra, we can now now multiply k-linear and `-linear alternating maps and get k + `-linear alternating
maps:

Λk(V ∗)× Λl(V ∗) −→ Λk+l(V ∗)
(α, β) 7→ α ∧ β.

Recall. For a manifold M , the tangent bundle TM =
∐
q∈M TqM can be given the structure of a manifold.

In particular if ϕ = (x1, . . . , xm) : U → Rm is a chart on M , then

ϕ̃ = (x1, . . . , xm,dx1, . . . ,dxm) : TU → Rm × Rm

is a chart on TM . Recall also that Vector fields on M are sections of TM π−→M , that is, maps X : M → TM
with π ◦X = idM .

Similarly one can define the cotangent bundle T ∗M =
∐
q∈M T ∗qM and give it the structure of a smooth

manifold in more or less the same way we made the tangent bundle into a manifold. That is, we manufacture
new coordinate charts on T ∗M out of coordinate charts on M and check that the transition maps between
the new coordinate charts are smooth. If ϕ is a chart then

ϕ =
(
x1, . . . , xm,

∂

∂x1
, . . . ,

∂

∂xm

)
: T ∗U → Rm × Rm

(q, η) 7→

(
x1(q), . . . , xm(q),

〈
η,

∂

∂x1

∣∣∣∣
q

〉
, . . . ,

〈
η,

∂

∂xm

∣∣∣∣
q

〉)
is a chart on T ∗M .

Here is an excerpt from the old notes checking the smoothness of the transition maps. Let ψ = (y1, . . . , yn) : V → Rn
be a coordinate chart on M with V ∩ U 6= ∅. Then

ψ̄ ◦ φ̄−1(r1, . . . , rn, w1, . . . , wn) =ψ̄(

nX
i=1

wi(dxi)φ−1(r))

=((ψ ◦ φ−1)(r),
∂

∂y1
(

nX
i=1

wi dxi), . . . ,
∂

∂yn
(

nX
i=1

wi dxi))

=((ψ ◦ φ−1)(r),
X
i

wi
∂xi
∂y1

, . . . ,
X
i

wi
∂xi
∂yn

).

We conclude that

(23.1) ψ̄ ◦ φ̄−1(r1, · · · , rn, w1, · · · , wn) = (ψ ◦ φ−1(r),

„
∂xi
∂yj

(r)

«0B@ w1

...
wn

1CA ),

which is smooth. The rest of the argument proceeds as in the case of the tangent bundle.

We will see in a week that one can construct the exterior powers Λk(T ∗M) =
∐
q∈M Λk(T ∗qM) and get

manifolds over M . The smooth sections of Λk(T ∗M)→M are called differential k-forms.

Notation. Ωk(M) def= Γ(Λk(T ∗M)) such that π ◦ ω = idM . What then is Ω0(M)? By convention Λ0(T ∗M) =
M × R. Consequently

Ω0(M) = {M τ→M × R
∣∣ τ(q) = (q, f(q)), f : M → R} = C∞(M)
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Remark 23.1. Differential forms on M can be multiplied point-wise: ∀α ∈ Ωk(M) ∀β ∈ Ωl(M)

(α ∧ β)q
def= αq ∧ βq

for all points q ∈M .

Example 23.2. Let M = Rm. Then TM = Rm × Rm and T ∗M = Rm × (Rm)∗. At every q ∈ Rm we have
a basis of T ∗q Rn : (dx1)q, . . . , (dxm)q. So Λk(T ∗M) = Rm × Λk((Rm)∗) and

α ∈ Ωk(Rm)⇔ α =
∑
|I|=k

aI dxI

where I = {i1, . . . , im} ⊆ {1, . . . ,m}, aI ∈ C∞(RM ), and dxI
def= dxi1 ∧ · · · ∧ dxim

Example 23.3. 1-forms on R2 look like

M(x, y) dx+N(x, y) dy

where M(x, y), N(x, y) are smooth functions.

Example 23.4. 2-forms on R3 look like

P (x, y, z) dx ∧ dy +Q(x, y, z) dy ∧ dz +R(x, y, z) dz ∧ dx,

where, again, P , Q and R are smooth functions.

Example 23.5.

α = cos v du− u sin v dv ∈ Ω1(R2)
β = sin v du+ u cos v dv ∈ Ω1(R2)

α ∧ β = (cos v du− u sin v dv) ∧ (sin v du+ u cos v dv)
= cos v sin v du ∧ du+ u cos2 v du ∧ dv
− u sin2 v dv ∧ du+ u2 sin v cos v dv ∧ dv
= u cos2 v du ∧ dv − u sin2 v dv ∧ du
= u cos2 v du ∧ dv + u sin2 v du ∧ dv
= udu ∧ dv

Remark 23.6. For any function f ∈ C∞(M), df is a 1-form. In particular given a coordinate chart
(x1, . . . , xm) we have

df =
∑〈

df,
∂

∂xi

〉
dxi =

∑ ∂f

∂xi
dxi

Example 23.7.
f(u, v) = u cos v df = d(u cos v) = cos v du− u sin v dv
g(u, v) = u sin v dg = d(u sin v) = cos v du+ u sin v dv

Hence in Example 23.5 we have df ∧ dg = d(u cos v) ∧ d(u sin v) = udu ∧ dv.

Remark 23.8. Once we define pullback of differential forms we’ll see that udu∧dv is the pullback of dx∧dy
by f(u, v) = (u cos v, u sin v).

We now proceed to define pullbacks of differential forms by smooth maps.

Recall. Given a linear map A : V →W between two vector spaces we get ΛkA : ΛkV → ΛkW . We also have
A∗ : W ∗ → v∗ where

(A ∗ l)(v) = l(Av) = (l ◦A)(v)

Hence given a linear map A : V →W we get Λk(A∗) : ΛkW ∗ → ΛkV ∗ with (l1∧· · ·∧lk) 7→ (A∗l1)∧· · ·∧(A∗lk).
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What does this map Λk(A∗) amount to when we identify exterior powers of the dual vector spaces with
alternating multilinear maps? We compute:

((Λk(A∗))l1 ∧ · · · ∧ lk)(v1, . . . , vk) = (l1 ◦A) ∧ · · · ∧ (lk ◦A)(v1, . . . , vk)
= det(li(Avj))
= (l1 ∧ · · · ∧ lk)(Av1, . . . , Avk)

Remark 23.9. Note that for all α ∈ Λk(W ∗) and all β ∈ Λn(W ∗) we have

Λk(A∗)α ∧ Λn(A∗)β = Λk+n(A∗)(α ∧ β)

since Λ∗(A∗) is a map of algebras!

With these preliminaries out of the way we are now set to define pullbacks of differential forms. If F : M → N
is a map of manifolds then for all q ∈M we have dFq : TqM → TF (q)N which gives us the following map of
algebras

Λ∗((dFq)∗) : Λ∗(T ∗F (q)N)→ Λ∗(T ∗qM)

So for α ∈ Ωk(N) we get F ∗α ∈ Ωk(M) defined by

(23.2) (F ∗α)q = Λ∗((dFq)∗)αF (q).

Strictly speaking we should check that if α is a smooth differential form on N then its pullback F ∗α is also
smooth. But let’s not worry about this for the time being, certainly not until after we define Λk(T ∗M).
Equation (23.2) translates into:

(23.3) (F ∗α)q(v1, . . . , vk) = αF (q)((dFq)v1, . . . , (dF )q)

Why did we define pullback of differential forms by (23.2) and not by (23.3)? Because (23.2) automatically
implies that

F ∗(α ∧ β) = F ∗α ∧ F ∗β
for all differential forms α, β on N .

Next Time. F ∗(df) = df ◦ F . Hence if x = r cos θ and y = r sin θ then dx ∧ dy = r dr ∧ dθ.
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